Specification of the grid managment library GRIDMAN

Vladislav Kotov, FZJ
October 4, 2017

Contents
(1__General structurel 1
2__Conventions| 2
[3 Description of the grid (GRIDMAN_GRID)| 3
[4 Index table (GRIDMAN_INDEX)| 3
D grid 4
bl _Cross-sectional areas of the celld 4
[5.2 Cylindrical areas of edges| L. 4
B3 _Cellwvolumesd 4
b4 Cell centersl e 4
b.5 Normals to the edges|. 6
.6 Cells are convex or not?l 6
5.7 Merging two grids| oo 6
5.8 rid triangulation| 7
5.9 Cut grid by a polygonel. e 7
6 CONVGRID 7
6.1 Input parameters| L 8
6.2 xamples| e e e e e e e e e 10
7 MERGEGRID 11
[7.1 Input parameters| L 11
R TRIANGI 11
[8.1 Input parameters| 11
8.2 Xample|l . . . o e e e e e e e e e e e 12
9 CUTGRIDI 13
9.1 Input parameters| 13
9.2 xample|l . . . o e e e e e e e e e 13

1 General structure

GRIDMAN is a library of tools to store and manipulate unstructured grids. Its primary applica-
tion is to prepare grids for the linear Monte-Carlo transport modelling (test particle Monte-Carlo).
Different pieces of the problem may be addressed by different codes which use different grids and
formats. GRIDMAN provides a universal format for describing such grids, and tools which allow
to combine the grids with each over, cut parts of the modelled domains (sub-modelling), divide
cells etc. In order to set the background for the transport modelling the combined and trans-
formed grid has to preserve connections to its origins. Essential element of the library which
ensures those connections are tables of indexes. The indexes can be defined for each cell or edge
of the original grid, they are then stay invariant through all transformation. That is, the indexes
do not change when the numbering of cells and edges change.
The library consists of the following essential elements:

Unified grid format - a data structure which can store various unstructured grids (GRIDMAN_GRID)

Data structure where tables of indexes are stored (GRIDMAN_INDEX)

Auxiliary data structure to store lists of elements with variable number of indexes in each
(GRIDMAN_INDLIST)

e Set of methods generic for each grid type, such as allocate/deallocate, check, read/write,
copy, eliminate cells or edges etc.

e Methods specific for each grid-type: 2D or 3D grid.

In addition to that, there are tools to convert legacy grid formats known in the tokamak edge
plasma research (SONNET, TRIA etc.) into GRIDMAN format, and back. At the moment, only
2D grid option is fully implemented, see Section |5 there are only a few 3D specific subroutines
implemented.

Files and folders of GRIDMAN

gridman.f : definition of objects (types),
global variables and interfaces
index . f : methods of object GRIDMANINDEX
indlist.f : methods of object GRIDMAN_INDLIST
gridl . f : methods of object GRIDMAN_GRID
grid2 . f : advanced methods of object GRIDMAN_GRID
geom . f : basic geometrical routines
grid2d : subroutines specific for the 2D grid type
formats : reading and writing of grids in formats
other than GRIDMAN_GRID
convert : converting grids to and from GRIDMAN_GRID
tests : test programs (unit tests)
apps : simple applications based on GRIDMAN

In the level diagram below the hierarchy of program units is shown. Units from upper level
use units from lower level.

GRIDMAN
CONVGRID MERGEGRID CUTGRID TRIANG
GRID2D CONVERT
(grid2d cut merge triang) (tria carre addsurf template vtk)
GRID1 GRID2
GRID

INDEX INDLIST FORMAT
GRIDMAN GRIDMAN_LIB

2 Conventions

The names of all public subroutines and other public entities of the library starts from GRIDMAN_.
This prefix is typically followed by the name of the data-structure to which the method is related,
e.g. GRIDMAN_GRID_, GRIDMAN_INDEX_ .

All public variables and definitions of the data structures are collected in the module GRIDMAN.
Explicit interfaces to subroutines are collected in the module GRIDMAN_LIB.

Every subroutine returns error code IERR: 0 for normal operation, < 0 for warnings and > 0
for errors. Both error and warning messages are printed into standard output (global variable
GRIDMAN_UNIT). Warning messages begin with string
WARNING from <name of the subroutine>. Errors begin with string
ERROR in <name of the subroutine>.

For each data-type there is a subroutine _CHECK which checks if the data are conformal the
defined rules. Normally, other subroutines assume that the input data have passed _CHECK. Check
of input data in all subroutines can be enforced by setting GRIDMAN_CHECK=.true.. Printing of
extra debugging information can be switched on by setting GRIDMAN_DBG=.true. In particular,
messages are printed at the beginning and upon completion of each subroutine.

NEDGES=6; NPOINTS=>5; NCELLS=2
PDIM=2; EDIM=2;

CELLS(1,1)=2; CELLS(2,1)=0
CELLS(1,2)=2; CELLS(2,2)=0
CELLS(1,3)=2; CELLS(2,3)=1
CELLS(1,4)=1; CELLS(2,4)=0
CELLS(1,5)=1; CELLS(2,5)=0
CELLS(1,6)=1; CELLS(2,6)=0
POINTS(1,1)=1; POINTS(2,1)=2
POINTS(1,2)=1; POINTS(2,2)=3
POINTS(1,3)=2; POINTS(2,3)=3
POINTS(1,4)=2; POINTS(2,4)=5
POINTS(1,5)=3; POINTS(2,5)=4
POINTS(1,6)=4; POINTS(2,6)=5
X(1:2,1:5)

Figure 1: An example of a simple 2D grid and GRIDMAN_GRID structure which describes it

One more important global variable is GRIDMAN_TOL - the accuracy (tolerance) parameter.
This parameter is used when two floating point numbers are compared. Numbers X1 and X2 are
considered to be equal if abs (X1-X2) <GRIDMAN_TOLx* (abs (X1)+abs (X2)+EPS). Where EPS is the
“machine zero” taken to be 10*tiny(X1). EPS is required for the case when both X1 and X2 equal
to zero.

3 Description of the grid (GRIDMAN_GRID)

The grid is defined as a set of edges. Each edge can be connected to up to 2 cells. Actual geo-
metrical location of edges is defined by points. Each point, in turn, is defined by it’s coordinates.
In the simplest case the points are the geometrical grid nodes. In general ”a point“ may refers
to any combination of numbers which are used to define the properties of edge - curvature radius
etc. Number of points required to define one edge (EDIM), number of point indices required to
define one point (PDIM) depend on the grid type.

An example of a simple 2D grid is shown in Figure[I] Array CELLS(:,IEDGE) contains indexes
of cells connected to the edge IEDGE. CELLS(I,IEDGE)<1 (I=1,2) means that this side of the edge
is not connected to any cell - open boundary of the grid. Negative numbers are allowed to reserve
the possibility of ”teleportation“. If CELLS(I,IEDGE)<O then IEDGE1=-CELLS(I,IEDGE) is the
index of edge which is connected with IEDGE directly. It can be that both CELLS(1:2,IEDGE)<1,
in this case the IEDGE does not belong to any cell - free edge. Moreover, the NCELLS=0 is allowed.
Array POINTS(IP,IEDGE) contains references to the coordinates in the array X. Coordinates of
the ”vertex* "IP of edge IEDGE are accessed as follows IPOINT=POINTS (IP,IEDGE), X(:,IPOINT).

Coordinates of the grid generated and used by different programs may be expressed in dif-
ferent units: SI units - meter, centimeter is often used in physics, and millimeter in engineering
applications. It is therefore important to store the units of coordinates together with the grid.
Text description is stored in the variable UNITS. Automatic translation of coordinates when e.g.
to grids are merged into one is enabled by the variable UNIT2SI which stores translation factor
into SI units (Meter). E.g. if the grid is defined in centimeter, then UNIT2SI=1e-2.

Tables of edges belonging to each cell, and edges connected to each point can be calculated on
demand (GRIDMAN_GRID_CELLS) and GRIDMAN_GRID_POINTS). Auxiliary data-type GRIDMAN_INDLIST
is introduced to store such tables with variable number of elements in each entry.

4 Index table (GRIDMAN_INDEX)

Two types of indices can be defined on a grid. Indexes connected with cells - ”cell indexes“,
and connected with edges - "edge indexes“. ”Point indexes“ could be added as well, but they

are not implemented at the moment. Same storage format is used for both types. Index ta-
ble is a 2D array INDEXES(0:NINDEX,NELEMENTS). First column INDEXES(O, :) is the number of
the object - cell or edge, to which the combination of indexes is connected. That is, the com-
bination INDEXES(1:NINDEX,IE) is connected to I0BJ=INDEXES(0,IE). E.g. if the cell ICELL
refers to a cell of a regular 2D grid, then X and Y indexes on the 2D grid can be accessed as:
ICELL=INDEXES(0,IE), IX=INDEXES(1,IE), IY=INDEXES(2,IE).

It is not necessary that the first column INDEXES (0, :) mentions all cells or edges of the grid -
the objects may stay unindexed. At the same time, one element may appear in this column more
than once - in this case several combinations of indexes are defined for one object. This may be
necessary if e.g. a cell is obtained by combining several cells of a finer grid.

The method of indexing applied here is the most flexible one, although it is not always the
most optimal one it terms of memory consumption. If only one index is defined for each object,
then the method used here requires twice as much memory as the optimal solution (w/o column
0) would require. This is the worst case, in other cases the storage penalty imposed by the applied
method is smaller.

5 2D grid

Edges of 2D grid are intervals defined on an (z,y) plane. Each cell of the grid represents a closed
chain of points, the edges do not intersect each over. There is an auxiliary subroutine for this
grid type which finds closed chain of points for each cell: GRIDMAN_GRID2D_CHAINS.

5.1 Cross-sectional areas of the cells

(GRIDMAN_GRID2D_CROSSECT)
The polygon area is calculated as:

N

Z (iYit1 — Tit1Yi) (1)

i=1

DN | =

N
1
S = 2 Zl [(it1 +2i) - (Yir1 —vi)| =

5.2 Cylindrical areas of edges

(GRIDMAN_GRID2D_CYLAREAS)

The 2D grid type can also represent an axi-symmetric grid in cylindrical coordinates. In this
case x plays the role of the radial coordinate. Cylindrical areas of edge are calculated as side
areas of a conical frustum:

S =7 (x1 + 22) \/(wz — 1)’ + (2 —n)° (2)

5.3 Cell volumes

(GRIDMAN_GRID2D_CYLVDLUMES)
Volumeof a cell of axi-symmetric grid (z is the radial coordinate) is calculated as a sum of
the signed volumes of the conical frustums, see Figure 2at

N

™
V= 3 ; (271 + 27 + i1 m:) - (Yisr — i)

N
s

3 Z (Tig1 + xi) - (TiYit1 — Tiv1Yi) (3)
=1

This formula is valid for a closed polygon without self-intersections. By convention the sign of the
individual term of the sum is positive if the points are arranged counter-clockwise and ;11 > y;.

5.4 Cell centers

(GRIDMAN_GRID2D_CENTER)
As cell centers the centers of mass of the polygons (X.,Y.) are taken.

vy

1 1 Vo o g_

Area S is calculated from Equation without taking absolute value.

(b) Va

Figure 2: Calculating volume of the toroidall cell revolving a) around z axis and b) around y axis
The calculation of Vj, is given by Equation (without taking absolute value), therefore:

N
1 1
Xe= 65 E (221 + 2 + igms) - (Yisr — i) = 65 E (Tip1 +2i) - (TiYivr — Tivry:) (4)
i—1 i=1

Here the terms of the sum have a positive sign if the points are arranged counter-clock wise and
x; > x;41. This ensures that the sum is always positive for the counter-clock wise arrangement
of points, same as in Equation .

The volume V; is calculated in a way similar to V}, as a sum of the volumes of the conical

frustums, see Figure

N N
1 1
Y. = 63 Z (yi2+1 +yi + Yir1yi) - (T — wig1) = %5 Z Yit1 +¥i) - (TiYit1 — Tiv1Yi) (5)
i=1 =

The equalities are valid for closed polygons.
For Equation one gets:

N N
Z (i1 + i) - (Vi1 — Z TiYit1 — Tit1Yi T Tit1Yir1 — TilYi) =
i=1 i=1

N N N
Z (TiYit1 — Tiy19i) + in+lyi+1 - Z TilYi =
i=1 i=1 i=1
N N N N
Z (TiYit1 — Tiv1yi) + Zﬂﬁiyi +IN+IYN+1 — Z TiYi — T1Y1 = Z (@iYit1 — Tiq1yi) (6)
i=1

=2 =2 i=1

T1Y1 = TN+1YN+1 Since the polygon is closed.
Equation can be transformed as well:

N
Do Wi + v Fyin) (@ —win) =) (Tl + TYF + Ty — Ty — Teny; — Tiayinys) =
=1 1=1

N

N
Z (iﬂz‘y?“ + Ty — Tiy; — $i+1yi+1yi) + Z 2y} — in+1yz'2+1 =
i=1 i=1 j

N N
Z Yir1 (Tiyir1 — Tiga¥i) + ¥i (Tivit1 — Tigayi)] Z Yir1 +¥i) - (TiYitr — Tiga1yi) (7)
1=1 =1

Here since 41 = 21 and yn4+1 = y1 (closed polygon):

N N N N

2 2 _ 2 2 2 2 _
E TilY; — E Tit1Yi41 = E TiY; +T1Y1 — E TiY; — TNF1YNy1 = 0
i=1 =1 1=2 =2

=R

Figure 3: Rule for choosing the direction of the edge normal vector

5.5 Normals to the edges

(GRIDMAN_GRID2D_NORM)
Coordinates of the surface normal which points to the left from the direction (z1,x2) can be
found with rotation matrix: turning to the angle 7/2 in the counter-clockwise direction:

cosm/2, —sinm/2 ro—x1\ [0, ~1 Ta—21\ _ [Y1—Y2

sinm/2, cosw/2 v2—11 /) |1, 0 Yo — 11) \ @2 — a1
To chose the direction of the normal vector the signed area of the polygon is calculated
according to Equation (w/o taking absolute value). If the edge in question is oriented counter-
clockwise, then the area S is positive and the sign of the normal vector has to be changed, see

Figure 3] left. Otherwise, if S < 0 then the sign is correct, Figure[3] right. At the end the normal
vector is also normalized. The final formula reads:

()= J _;>gn+(2) (%)

5.6 Cells are convex or not?

(GRIDMAN_GRID2D_ISCONVEX)
Cells are convex if all corners are smaller than 180°. This is true if the combination:

v=(z; = zi-1) Wit1 — ¥i) = (Tit1 — i) (Yi — Yi-1)

has the same sign for each corner (each i), v = 0 are counted separately.

5.7 Merging two grids

(GRIDMAN_GRID2D_MERGE)

Merging means trying to attach boundary edges of the two grids to each over. That is, edges
with at least one CELLS(I,ICELL) <0. If an edge of one grid matches to the set of edges of another
grid, then this edges is replaced be this set of edges. Duplicate points are removed.

To find if a point (end of one edge) belongs to the interval (another edge) the following
formulas are used. Distance between point and line:

s_AvtBy+C
NI

Equation of straight line:
y—y1 T —I1

Y2 — Y1 T2 —T1

Or:
z(y2 — 1) +y(z1 —z2) +yi(ze —x1) —21(y2 — 1) =0

That means A = ys —y1, B =21 — 22, C = y1(v2 — 1) — 21(y2 — y1) and:

5= @)y —y) — (y—y)(@2 — 1)
V(w2 = 21)2 + (y2 — y1)?

Finally, the condition that that point (z,y) lies on the line ((z1,y1)(22,y2)) is written as:

(z—z1)(y2 =) — (Y —y1) (@2 —21) =0 (8)

It has to be taken into account, however, that due to finite precision the coordinates known to
the code may differ from true coordinates. Therefore, Equation is fulfilled not for (x,y) and
((x1,y1)(z2,y2)), but for (z + Az,y + Ay) and ((x1 + Azy,y1 + Ayr) (22 + Azg, ya + Ays)):

(r =21+ Ax — Axy) (y2 —y1 + Aya — Ayr) — (y — 1 + Ay — Ayy) (22 — 21 + Azp — Azy) =0

Neglecting terms of the order A? yields:
(—a1) (2 —y1) = (Y — 1) (32 — 1) =

= (v2 —21) (Ay — Ay1) + (y — y1) (Azz — Azy) — (y2 — y1) (Az — Azq) — (v — 21) (Ay2 — A%lg
9
Thus:
|(— 1) (Y2 — 1) — (¥ — 1) (2 — 21)| <

< |wg — 21| (1AY] + [Ay) +ly — w1] ([Az2| + [Aza|)+ly2 — vi] (|Az] + [Azy|)+]z — 24 (IAy2|(+)\Ay1D
10

Inequality is fulfilled if Equation (9)) is fulfilled, thus, this inequality gives necessary condition

of fulfilling the Equation (9). Further, A are not known but can be estimated as |Az| < e |z],

|Ay| < €|y| etc. where € is some prescribed constant which describes relative accuracy of coordi-

nates, e.g. € = 107°. Accuracy ¢ is mostly determined by accuracy of the data representation in

the files.

Finally, Equation is translated into the form:

|(—21) (y2 —v1) — (¥ — 1) (2 —21)| <

<lza =21 (|y[+ [92]) + |y = wal (2| + |22]) + ly2 = gl ([2] + |21]) + & — 21 (Jy2| + |y1])] €

This inequality is used in the code as condition that point (z,y) lies on the line ((x1,y1)(x2, y2)).
To find out if the point, in addition, lies inside the interval, obvious extra conditions have to be
fulfilled (non-zero length of the interval is assumed):

Y2 > Y1, Y1 <Y<Yz
Y1 >y2, N1 <y<y2
To > X1, T1<T<T2
xr1 > T2, T1<T< T2

|zo — x1] < |y2 — 11|,

|T2 — 21| > [y2 — w1l

To check if the point (z,y) coincides with one of the ends, that is © = z1 and same for y, same
technique as above is used to find the necessary condition:

x4+ Ax =21+ Axy = |x — 21| < |Az| + |Axy| < e(Jz| + |21])

5.8 Grid triangulation

See DOXYGEN documentation and source code of GRIDMAN_GRID2D_TRIANG

5.9 Cut grid by a polygone
See source code of GRIDMAN_GRID2D_CUT

6 CONVGRID

CONVGRID is a versatile grid convertor based on GRIDMAN library. Examples of the input
files

convgrid.parameters are shown below in Section [6.2

6.1 Input parameters
Usage:

./ convgrid help
prints documentation

./ prospect <option> <filel > <file2> <file3 >

convert <file?> into VIK format .

Input format depends on <option>

—s : sonnet (carre) grid in filel

—f : fort.30 grid in filel

—t : EIRENE triangular grid in filel file2 file3
(fort.33,34,35 — nodes, elements, neigbors)

—e2 : 2D Additional Surfaces in EIRENE input file filel

—e3 : 3D Additional Surfaces in EIRENE input file filel

—p : template in filel

—g : gridman grid in filel

Commands —fp, —tp, —ep produce template text files which
can be viewed e.g. in DG

))

Commands which start from ’'—-—":
-5, __f 9 —t 9 —e2 bl —e3 , — b, —8
only print metadata of the grids

./ convgrid < convgrid.parameters

output is controlled by the FORTRAN namelist CONVGRID:
&CONVGRID

/
<new line>
Variablies to be defined in FORTRAN namelist CONVGRID:

DESCRIPTION : string (256 character max) which describes
the data in the output

SONNET_IN : name of the input file with CARRE grid
in SONNET format
FORT30.IN : name of the input file with CARRE grid
in EIRENE fort .30 format
FORT33_IN : name of the input files with
FORT34_IN : triangular grid in
FORT35.IN : EIRENE fort.33,34,35 format (nodes, elements, neigbors)

TEMPLATEIN : name of simple template file (as produced
e.g. by DG) with polygon definition

GRID_IN : name of the input file
in GRIDMANGRID format
EIRENE_IN : name of the EIRENE input file from which
Additional Surfaces are taken
RLBND : this variable defines the type of Additional Surfaces

which will be read from the EIRENE input file.
Relevant only for EIRENE_IN option.

If RLBND=2 (default) then 2D intervals are read.
If RLBND=3 the 3D triangles are read

Either SONNETIN or FORT30.IN or FORT33,34,35_IN or GRID_IIN has to be

specified . Ambiguity leads to error message.

LEIRENE

NEXCLUDE

IXE(2,:)
IYE(2,:)

TRIANGULATE :

IEIND

ICIND

VIK.OUT

GRID_OUT

FORT33.0UT
FORT34.0UT
FORT35.0UT

is a switch which affects cell index mapping
generated from SONNET or FORT.30 file.

If LEIRENE=.TRUE. then the cell indices are
generated in accordance with EIRENE definition .
Default LEIRENE=.FALSE., that is B2 definition.

: Number of blocks to be exluded from the grid.
Default value 0.
Cells lying between IXE(1) and IXE(2) in X direction ,
and between IYE(1l) and IYE(2) in Y direction
are taken away from the grid.
This option is only applicable to grids with
CELLINDEX(1)%NINDEX>1, and has no effect if
this is not the case.
IX=CELLINDEX (1) %INDEXES (1 ,:)
IY=CELLINDEX(1)%INDEXES (2 ,:)

if .TRUE. then the resulting grid is triangulated.
Default is .FALSE.

if IEIND>0 then only edge index number IEIND
is taken over in the resulting grid

if TEIND==0 tnen no edge indices

from the input are taken over

if IEIND<O (default) tnen all edge indices
from the input are taken over

same as IEIND for cell indices

name of the file with output in VIK format

which can be used by graphics programms, e.g. Paraview
Cell indeces added to the plot as cell—centered

scalar values

name of the file with output in GRIDMAN_GRID format
names of the the files with output

in the form of EIRENE triangular grid

fort.33,34,35 format

TEMPLATEOUT : name of the file with output in simple

template format, can be used e.g. by DG

factor which translates units into Meter

e.g. if coordinates have to be in CM then FSCALE=le—2
If fscale<=0 the no unit translation is applied
Default value FSCALE=-1.

string which describes the units after translation ,
applied only if FSCALE>0. Default ’Not defined’

f .TRUE. then extra debugging output is produced.

Default is .FALSE.

FSCALE
UNITS
DBGMOD : i
LCHECK : i

f . TRUE. then standard check in GRIDMAN subroutines

are enforced. Default is .FALSE.

Default uni

SONNET_IN
FORT30.IN
FORT33_IN
FORT34_IN

ts:

Meter
Meter
Centimeter

FORT35_IN
EIRENE_IN : Centimeter
TEMPLATEIN : Millimeter

6.2 Examples

Read triangular grid in EIRENE format and
write it in GRIDMAN_GRID format ,

generate x.vtk output for graphic programs
&CONVGRID

DESCRIPTION="Triangular grid for Alcator C—mod’
FORT33.IN="input/fort .33.cmod’,
FORT34_IN="input/fort.34.cmod’
FORT35.IN="input/fort .35.cmod’ ,
FORT33.0UT="fort .33,

FORT34. OUT="fort .34,

FORT35.0UT="fort .35,
VIKOUT="cmod_tria.vtk’,
GRID.OUT=’cmod _tria.grd’,

LCHECK=.TRUE. ,

/

Read CARRE grid in fort.30 format and
translate it into GRIDMAN_GRID format .
Exclude core cells. Translate units into Centimeter.
Generate x.vtk output for graphic programs
&CONVGRID

DESCRIPTION="CARRE grid for Alcator C-mod’
FORT30IN=’input/fort.30.cmod’,
GRID_OUT="cmod _eliminate.grd ",
VIKOUT="cmod _eliminate . vtk ",

FSCALE=1e -2,

UNITS="CM’ ,

NEXCLUDE=1,

IXE(1,1)=25,72,

IYE(1,1)=0,16,

LCHECK=.TRUE. ,

/

Read CARRE grid in SONNET format .
Exclude core part. Triangulate.
Generate EIRENE triangular grid,
x.vtk output for graphic programs,
as well as simple template file
for programs like DG.

Flag LEIRENE is used to get indices
of SONNET grid in accordance with
EIRENE definition

&CONVGRID
DESCRIPTION="Triangulated ITER SOL grid ’,
SONNETIN="input/iterm.carre.105",
LEIRENE=.TRUE. ,

NEXCLUDE=1,

IXE(1,1)=22,72,

IYE(1,1)=0,12,

TRIANGULATE=.TRUE. ,
VIKOUT="iter_sol .vtk’,
FORT33.0UT="fort .33 ",

FORT34 OUT="fort .34,
FORT35.0UT="fort .35,

10

LCHECK=.TRUE. ,
TEMPLATE OUT="tria . txt ',
/

Read EIRENE Additional Surfaces and
convert them into GRIDMANGRID object
and VIK plot

&CONVGRID

DESCRIPTION="EIRENE Additional Surfaces’,
EIRENEIN="./input/input.eir ’,

GRID OUT="eirene .grd ’,

VIKOUT="eirene . vtk

LCHECK=.TRUE. ,

/

7 MERGEGRID

MERGEGRID is an interface to GRIDMAN_GRID2D_MERGE which merges two grids.

7.1 Input parameters

Variablies to be defined in FORTRAN namelist MERGEGRID:
SMERGEGRID

GRID1.IN : name of the file with 1st grid object
GRID2_IN : name of the file with 2nd grid object
which will be merged into the first one

MTOL : tolerance parameter for GRIDMAN_GRID2D MERGE which
defines relative accuracy of the poits coordinates.
Default value is le—5. It might be necessary to increase
or decrease TOL in some individual cases. If TOL is too large
than the code can mistakenly take two different points
for one point. If TOL is too small then the code cannot
recognise what a point is sitting on the grid edge.

GRID3.OUT: name of the file where the resulting combined grid
is stored

Grids are read and stored in GRIDMAN_GRID format
DBGMOD : if .TRUE. then extra debugging output is produced.
Default is .FALSE.

ILCHECK : if .TRUE. then standard check in GRIDMAN subroutines
are enforced. Default is .FALSE.

8 TRIANG

TRIANG combines plasma grid with triangular grid between plasma and wall, and generates
triangular grid for EIRENE. This program can replace TRIAGEOM.

8.1 Input parameters
Usage:

./ triang help

11

prints documentation

./triang < triang.parameters

output is

&TRIANG

<new line>

controlled by the FORTRAN namelist TRIANG D:

Variablies to be defined in FORTRAN namelist TRIANG:

FORT30_IN
FORT33.IN
FORT34.IN
FORT35.IN
TOL

FORT33.0OUT
FORT34.0UT
FORT35.0UT

VIK.OUT

GRID_OUT

TEMPLATEOUT :

DBGMOD

LCHECK

name of the input file with CARRE grid
in EIRENE fort.30 format

name of the input files with
triangular grid in

: EIRENE fort.33,34,35 format (nodes, elements, neigbors)

tolerance parameter for the mergegrid algorithm
Default value TOL=le—5

names of the the files with resulting combined grid
combined trianular grid in fort.33,34,35 format
(nodes, elements, neigbors)

name of the file with output in VIK format

which can be used by graphics programms, e.g. Paraview
name of the file with output in GRIDMAN._GRID format
name of the file with output in simple

template format, can be used e.g. by DG

if .TRUE. then extra debugging output is produced.
Default is .FALSE.

if .TRUE. then standard check in GRIDMAN subroutines
are enforced. Default is .FALSE.

8.2 Example

Generate combined triangular grid out of
plasma grid and triangular grid
in the region between plasma and wall

&TRIANG

FORT30_IN="input/fort.30.jet ’,

FORT33.IN="input/fort.33.jet.tria
FORT34.IN="input/fort.34.jet.tria
FORT35IN="input/fort .35.jet .tria

TOL=1e -5,

FORT33.0UT="fort .33,
FORT34. OUT="fort .34,
FORT35.0UT="fort .35,
VIK.OUT="combined . vtk ’,
GRID_OUT=’combined . grd ’,
TEMPLATE. OUT="combined . txt ’,
DBGMOD=.FALSE. ,
LCHECK=.FALSE. ,

/

12

9 CUTGRID

CUTGRID is an interface to GRIDMAN_GRID2D_CUT which cuts part of the grid inside or outside
of prescribed contour.

9.1 Input parameters

Variablies to be defined in FORTRAN namelist CUTGRID:

&CUTGRID
/
DESCRIPTION : string (256 characters max) which describes
the resulting grid and mappings
GRID_IN : name of the file with grid in
GRIDMAN_GRID format
CONTOURAIN : name of the input file with cloused contour
(in template format) which is used to cut the grid
UNIT2METER, : if UNIT2METER>0., then this is a
factor which translates the units of CONTOURIN
into Meter. E.g. if coordinates in CONTOUR.IN
are defined in Centimeter then UNIT2METER=1e—2
If UNIT2METER<=0., then the transformation
is not applied, it is assumed that the coordinates
in CONTOURIN are defined in Millimeter.
Default UNIT2METER=-1.,
LEXCLUDE : if .FALSE. then part of the grid inside

CONTOURIN is taken to the resulting grid,
if . TRUE. then CONTOURIN is excluded from
the resulting grid. Default value .FALSE.

IEIND : if IEIND>0 then edge index number IEIND of GRID_IN is
merged into indexes of segments in CONTOURIN and
is stored as first edge index of GRID.OUT

GRID_.OUT : name of the file where the resulting grid is stored

DBGMOD : if .TRUE. then extra debugging output is produced.
Default is .FALSE.

LCHECK : if .TRUE. then standard check in GRIDMAN subroutines
are enforced. Default is .FALSE.

TOL : tolerance parameters, default is GRIDMANTOL

CUTGRID may not handle properly the situation when the polygon
(contour) segments intersect the grid nodes, or when the grid

edges intersect the polygon vertices. To identify such intersections
it is recommended to run the program with LCHECK=.TRUE.

9.2 Example

&CUTGRID

DESCRIPTION="ITER F57, wide grid. Cut by first wall’,
GRID_IN="ITER_F57_wide . grd ’,

CONTOURAIN="input /ITER_F57. wall ’ |
GRID.OUT="ITER_F57_wide_cut .grd ’,

IEIND=1,

/

13

	General structure
	Conventions
	Description of the grid (GRIDMAN_GRID)
	Index table (GRIDMAN_INDEX)
	2D grid
	Cross-sectional areas of the cells
	Cylindrical areas of edges
	Cell volumes
	Cell centers
	Normals to the edges
	Cells are convex or not?
	Merging two grids
	Grid triangulation
	Cut grid by a polygone

	CONVGRID
	Input parameters
	Examples

	MERGEGRID
	Input parameters

	TRIANG
	Input parameters
	Example

	CUTGRID
	Input parameters
	Example

